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Cannabinoids include the active constituents ofCannabis or are molecules that mimic the

structure and/or function of these Cannabis-derived molecules. Cannabinoids produce

many of their cellular and organ system effects by interacting with the well-characterized

CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid

drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now

demonstrates that cannabinoid agents produce effects by modulating activity of the

entire array of cellular macromolecules targeted by other drug classes, including: other

receptor types; ion channels; transporters; enzymes, and protein- and non-protein

cellular structures. This review summarizes evidence for these interactions in the CNS and

in cancer, and is organized according to the cellular targets involved. The CNS represents

a well-studied area and cancer is emerging in terms of understanding mechanisms by

which cannabinoids modulate their activity. Considering the CNS and cancer together

allow identification of non-cannabinoid receptor targets that are shared and divergent in

both systems. This comparative approach allows the identified targets to be compared

and contrasted, suggesting potential new areas of investigation. It also provides insight

into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining

a comprehensive understanding of the diverse mechanisms of cannabinoid action may

lead to the design and development of therapeutic agents with greater efficacy and

specificity for their cellular targets.

Keywords: cannabinoid, cannabinoid receptor-independent, central nervous system, Cancer, experimental

therapeutics

INTRODUCTION

Cannabinoids are a broad and diverse class of drugs that are structurally- or functionally-related to
those isolated from Cannabis (i.e., are “Cannabis-like”). Several structural classes of cannabinoid
drugs have been identified, including: phytocannabinoids (related to those derived from plant
material); endogenously-produced cannabinoids; and related eicosanoids that regulate vertebrate
endocannabinoid signaling systems; synthetic and other types of cannabinoids (many developed
seeking modulators of other signaling systems, but found to interact with the classic CB1 and/or
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CB2 receptors). Classical cannabinoid agonists (structures
shown in Table 1) bind to and activate cannabinoid receptors
1 and 2 (CB1, CB2) that modulate signal transduction
cascades to produce various physiological and pathological
outcomes. The actions of cannabinoids are also regulated
by the endocannabinoid system (ECS) which includes
enzymes involved in synthesis, uptake and degradation of
endogenous cannabinoid ligands, and the CB1 and CB2
receptors. Cannabinoid pharmacology is an active field, and
new examples of cannabinoid drugs are identified regularly
(Shevyrin et al., 2016) with the primary goal of discovering novel
therapeutics.

It is now clear that, in addition to the classic CB1 and CB2
receptors, cannabinoid-related agents interact with a spectrum of
macromolecular targets, including: other receptors; ion channels;
transporters; enzymes and; protein- and non-protein cellular
structures. Evidence for cannabinoid modulation of these targets
has already been the subject of excellent reviews (Kreitzer and
Stella, 2009; De Petrocellis and Di Marzo, 2010; Pertwee, 2010).
The purpose of this review is to examine current studies that
focus on how off-receptor targets mediate the effects of classical
cannabinoids in the CNS and in cancer. Cannabinoids that
interact with cannabinoid receptors in an allosteric manner
(allosteric modulators) are outside of the scope of this review but
have been recently reviewed elsewhere (Busquets Garcia et al.,
2016; Janero and Thakur, 2016; Khurana et al., 2017; Nguyen
et al., 2017).

Active constituents of Cannabis produce CNS effects, and
the endocannabinoid signaling system was discovered in CNS,
therefore cannabinoid effects on neuronal activity have been
more thoroughly and efficiently studied than in more peripheral
processes like cancer. Although CB1 and/or CB2 receptors are
known to be expressed in some cancers (Sarfaraz et al., 2008),
their levels vary andmay be either up- or down regulated (Bifulco
et al., 2001; Begum et al., 2005). Variable receptor expression
suggests that cannabinoid effects in cancer are more likely to
involve non-receptor mechanisms than in CNS, making the
system a promising area to examine for novel targets. Thus,
focusing on both CNS and cancer will allow established central
and emerging peripheral effects that are not mediated by CB1
or CB2 to be compared and contrasted, in order to appreciate
common and divergent mechanisms that are involved. This
comparison may also reveal important cannabinoid targets in the
CNS and cancer that can form a basis for inquiry in other organ
systems. In addition, awareness of non-cannabinoid receptor
targets of cannabinoids may lead to the development of drugs
with greater efficacy and specificity for their targets.

Roles of Cannabinoids and the
Cannabinoid Receptors in the CNS
CB1 receptors are abundant in CNS and expressed in brain
at consistently high densities across vertebrate species within
which levels have been measured (∼2,000 fmol/mg protein,
e.g., Pertwee, 1997; Soderstrom et al., 2000; Soderstrom and
Johnson, 2001). Although expressed at much lower levels than
CB1, CB2 receptors also play clear roles in reward-related CNS

activity (Zhang et al., 2014) and immune responses (Cabral et al.,
2008). High-level CB1 expression (approaching that of amino
acid transmitter receptors) may have contributed to delayed
appreciation of central cannabinoid effects produced following
interaction with other cellular macromolecules. This is because
the magnitude of non-receptor-mediated effects may be small
relative to those that follow activation of the more abundant
CB1 receptors. This is of therapeutic importance as when using
drugs to treat disease often “less is more” and more modest
indirect effects may be adequate to mitigate disease processes
while avoiding toxicity. Thus, cannabinoid-related agents with
targets independent of CB1 and CB2 receptors are currently
being effectively employed or evaluated for management of a
variety of CNS disorders (McPartland et al., 2014). The non-
CB1/CB2 CNS-relevant targets reviewed here, along with the
cannabinoid ligands that interact with them, are summarized in
Table 2.

Effects of Cannabinoids and the
Cannabinoid Receptors on Cancer
Both CB1 and CB2 receptors, and their endogenous ligands,
are expressed in a variety of peripheral organs, including;
the GI tract, liver, bone, reproductive system, skin, and the
immune system. Peripheral endocannabinoid signaling also
regulates many aspects of human pathophysiology, including
cancer. Cannabinoid agonists are used as palliative therapy
for chemotherapy-induced nausea and vomiting, and they may
also be beneficial in the treatment of cancer-related pain.
Evidence from both in vitro and in vivo studies established
the efficacy of these compounds in reducing tumor growth
and proliferation (Ladin et al., 2016). Much of this efficacy is
attributable to interaction with targets other than the classic
CB1/CB2 receptors. Therefore, we focus on how off-receptor
targets mediate cannabinoid effects on cancer. The cancer-related
off-receptor targets reviewed here, and the cannabinoid ligands
that interact with them, are summarized in Table 3.

NON-CB1/CB2 RECEPTOR TARGETS

Deorphanized G-protein-Coupled
Receptors (GPCRs) in CNS and Cancer
Four former orphan GPCRs (GPR55, GPR18, GPR119, and
GPR35) have now been clearly established to transduce effects of
a subset of both naturally-occurring and synthetic cannabinoid
compounds. The available data demonstrate that cannabinoids
directly activate these four GPCRs in the CNS, and they also
activate GPR55 in cancer.

GPR55 in CNS
The most well-characterized of the deorphanized GPCRs, GPR55
(Ryberg et al., 2007), is expressed most highly in brain, adrenal
gland, and digestive tract (although at reportedly low levels
relative to that of CB1).When expressed in HEK293 cells, specific
binding of the synthetic CB1 agonist CP55940 is observed, but
not of the CB1/CB2 synthetic agonistWIN55212-2. Interestingly,
a very small amount of specific GPR55 binding was observed
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TABLE 1 | Structures of cannabinoids reviewed, summarized by class.

Endocannabinoids (ECs)

Arachidonic acid-derived ECs

AEA Noladin Ether (2-AG ether) 2-AG Virodhamine

NAGly 2A-LPA Oleic acid-derived EC

Oleoylethanolamide (OEA)

Palmitic acid-derived EC

Palmitoylethanolamide (PEA)

Other EC

Lysophosphatidylinositol (LPI)

Phytocannabinoids

Tricyclic phytocannabinoids

THC THCA THCV THCVA

CBN

Bicyclic phytocannabinoids

CBD CBDA CBDV CBDVA

(Continued)
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TABLE 1 | Continued

AbCBD

Other phytocannabinoids

CBG CBGV CBGA CBC

Synthetic cannabinoids

Dibenzopyran derivatives (THC related compounds) Cyclohexylphenol derivatives

HU-210 Ajulemic acid CP55940

Aminoalkylindoles

JWH-015 WIN AM630

(Continued)
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TABLE 1 | Continued

Synthetic analogs of ECs

MA ACPA

Other synthetic cannabinoids

O-1918 O-1602 HU-308 LY320135

SR141716A AM251

AEA, arachidonoyl ethanolamide or anandamide; 2-AG, 2-arachidonoyl glycerol; OEA, oleoylethanolamine; PEA, palmitoylethanolamide; NAGly, N-arachidonoyl glycine; LPI,

lysophosphatidylinositol; 2A-LPA, 2-arachidonoyl lysophosphatidic acid; THC, ∆9-tetrahydrocannabinol; THCA, THC acid; THCVA, tetrahydrocannabivarin acid; CBD, cannabidiol;

CBDA, cannabidiol acid; CBDV, cannabidivarin; CBDVA, cannabidivarin acid; CBN, cannabinol; CBC, cannabichromene; CBG, cannabigerol; CBGV, cannabigerovarin; CBGA,

cannabigerol acid; AbCBD, abnormal cannabidiol; WIN, WIN55212-2; MA, methanandamide; ACPA, arachidonylcyclopropylamide.

using 50 nM of the CB1-selective antagonist/inverse agonist
SR141716A (SR).

Using the same HEK293 cell line for GTPγS functional
assays, the endogenous agonist 2-arachidonylglyerol (2-
AG) potently activates GPR55 (EC50 = 3 nM), although
virodhamine (EC50 = 12 nM) is a more complete agonist
with about 50% greater efficacy. Notably, in a separate assay of
intracellular calcium release, 2-AG and virodhamine showed
no GPR55 agonism, suggesting this receptor is subject to
agonist-dependent functional selectivity (Lauckner et al.,
2008). Other potent agonists discovered in this initial screen
of GPR55 efficacy include; palmitoylethanolamide (PEA),
CP55940, 19-tetrahydrocannabinol (THC), noladin ether, and
anandamide with EC50s of 4, 5, 8, 10, and 18 nM respectively,
and efficacies similar to that of 2-AG. Interestingly, the
non-psychoactive phytocannabinoid cannabidiol (CBD) was
found to antagonize GPR55 activity at physiologically relevant
concentrations.

GPR55 primarily couples through the relatively obscure Gα13.
This interesting G-protein activates a cascade involving RhoA
that, among other effects, ultimately alters actin polymerization
and stability, implicating GPR55 signaling in processes related
to neuronal morphology (Worzfeld et al., 2008). This potential
role is further supported by effects to promote neurite retraction
(Obara et al., 2011). More recently, evidence in transfected
HEK293 cells indicates that signaling through Gq also occurs
(Lauckner et al., 2008).

In ERK activation assays with GPR55-expressing HEK293
cells, lysophosphatidylinositol (LPI) is implicated as an
important endogenous agonist (Oka et al., 2007). Notably,
2-AG and virodhamine were not effective in stimulating ERK in
transfected HEK293 cells, possibly indicating ligand-dependent
functional selectivity for different signal transduction pathways.
LPI was also found to dose-dependently increase intracellular
calcium in these cells with an EC50 ∼ 1µM, an effect possibly
related to GPR55 activation of Gq. System-dependent efficacy
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TABLE 2 | Summary of CNS-relevant non-cannabinoid receptor targets.

Target Target type Ligand Ligand type Activity Potency (EC50, nM) System Assay References

5-HT1A Receptor CBD Phyto Agon NA Rat BNST Anxiolysis Gomes et al., 2011

5-HT1A Receptor CBD Phyto Agon ∼3,000 LN 231 Cell viab. Ward et al., 2014

5-HT1A Receptor CBD Phyto Agon NA CHO Cyclase inhib. Russo et al., 2005

5-HT1A Receptor CBD Phyto Agon ∼1 µg/kg Rat Gaping Rock et al., 2014

5-HT1A Receptor CBD Phyto Agon NA CHO GTPγS Russo et al., 2005

5-HT1A Receptor CBD Phyto Agon NA Mouse Panic Twardowschy et al., 2013

5-HT1A Receptor CBD Phyto Agon NA Rat MFB Plus maze Fogaça et al., 2014

5-HT1A Receptor CBD Phyto Antag NA Rat ICSS Katsidoni et al., 2013

5-HT1A Receptor CBD Phyto Ligand NA CHO Lig. displ. Russo et al., 2005

5-HT3 Receptor AEA Endo Antag 190 Rat NDG Cat. current Fan, 1995

5-HT3 Receptor AEA Endo NCAnt 129 Rat NDG Cat. current Barann et al., 2002

5-HT3 Receptor CP55940 Syn Antag 94 Rat NDG Cat. current Fan, 1995

5-HT3 Receptor CP55940 Syn NCAnt 648 Rat NDG Cat. current Barann et al., 2002

5-HT3 Receptor JWH-015 Syn NCAnt 147 Rat NDG Cat. current Barann et al., 2002

5-HT3 Receptor LY320135 Syn NCAnt 523 Rat NDG Cat. current Barann et al., 2002

5-HT3 Receptor THC Phyto NCAnt 38.4 Rat NDG Cat. current Barann et al., 2002

5-HT3 Receptor WIN Syn Antag 310 Rat NDG Cat. current Fan, 1995

5-HT3 Receptor WIN Syn NCAnt 104 Rat NDG Cat. current Barann et al., 2002

A2A Receptor CBD Phyto Agon NA EOC-20 Cell prolif. Carrier et al., 2006

AMPA Receptor AEA Endo Antag 160–240 X. oocytes Cat. current Akinshola et al., 1999

ANA trans Transporter CBD Phyto Antag 25,300 leukemia Cx ANA uptake De Petrocellis et al., 2011

ANA trans Transporter CBG Phyto Antag 11,300 leukemia Cx ANA uptake De Petrocellis et al., 2011

DAGLα Enzyme THCA Phyto Antag 27,300 COS-7 2-AG met De Petrocellis et al., 2011

δOP Receptor SR141716A Syn NCAnt NA CB1 KO GTPγS Zádor et al., 2014

ENT1 Transporter CBD Phyto Antag ∼250 EOC-20 Nucleoside Carrier et al., 2006

ENT1 Transporter THC Phyto Antag ∼50 EOC-20 Nucleoside Carrier et al., 2006

FAAH Enzyme CBD Phyto Antag 15,200 Rat brain ANA met De Petrocellis et al., 2011

GABAA B2 Receptor 2-AG Endo Agon 1,100 X. oocytes Cl− current Sigel et al., 2011

GABAA B2 Receptor 2-AG Endo Antag NA HEK293 Cl− current Golovko et al., 2014

GABAA B2 Receptor CP55940 Syn Antag NA HEK293 Cl− current Golovko et al., 2014

Glycine Receptor 2-AG Endo Antag NA HCX

neurons

Cl− current Lozovaya et al., 2005

Glycine Receptor AEA Endo Agon 230–318 Rat VTA Cl− current Hejazi et al., 2006

Glycine Receptor AEA Endo Antag 300 HCX

neurons

Cl− current Lozovaya et al., 2005

Glycine Receptor THC Phyto Agon 115 Rat VTA Cl− current Hejazi et al., 2006

Glycine Receptor WIN Syn Antag 300 HCX

neurons

Cl− current Lozovaya et al., 2005

Glycine α1 Receptor AEA Endo Antag 38 HEK293 Cl− current Yang et al., 2008

Glycine α2 Receptor HU210 Syn Antag 90 HEK293 Cl− current Yang et al., 2008

Glycine α2 Receptor HU308 Syn Antag 1,130 HEK293 Cl− current Yang et al., 2008

Glycine α2 Receptor NAGly Endo Antag 3,030 HEK293 Cl− current Yang et al., 2008

Glycine α2 Receptor WIN Syn Antag 220 HEK293 Cl− current Yang et al., 2008

GLYT1a Transporter AEA Endo Agon 30,000 X. oocytes Gly trans Pearlman et al., 2003

GPR119 Receptor OEA Endo Agon 3,200 Yeast LacZ Overton et al., 2006

GPR119 Receptor PEA Endo Agon >10,000 Yeast LacZ Overton et al., 2006

GPR18 Receptor AbCBD Syn Agon ∼0.3 µg/kg RVLM BP Penumarti and

Abdel-Rahman, 2014b

GPR18 Receptor AbCBD Syn Agon 836 HEC-1B MAPK act McHugh et al., 2012

GPR18 Receptor ACPA Syn Agon 1,350 HEC-1B MAPK act McHugh et al., 2012

GPR18 Receptor AM251 Syn Antag 9,640 HEC-1B MAPK act McHugh et al., 2012

(Continued)
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TABLE 2 | Continued

Target Target type Ligand Ligand type Activity Potency (EC50, nM) System Assay References

GPR18 Receptor AEA Endo Agon 383 HEC-1B MAPK act McHugh et al., 2012

GPR18 Receptor CBD Phyto Antag 5,110 HEC-1B MAPK act McHugh et al., 2012

GPR18 Receptor NAGly Endo Agon NA CHO Ca++ Kohno et al., 2006

GPR18 Receptor NAGly Endo Agon ∼30 CHO Cyclase inhib. Kohno et al., 2006

GPR18 Receptor NAGly Endo Agon 45 HEC-1B MAPK act McHugh et al., 2012

GPR18 Receptor O-1602 Syn Agon 65 HEC-1B MAPK act McHugh et al., 2012

GPR18 Receptor O-1918 Syn Antag ∼0.4 µg/kg RVLM BP Penumarti and

Abdel-Rahman, 2014b

GPR18 Receptor THC Phyto Agon 960 HEC-1B MAPK act McHugh et al., 2012

GPR35 Receptor 2A-LPA Endo Agon ∼100 HEK293 Ca++ Oka et al., 2010

GPR55 Receptor 2-AG Endo Agon 3 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor AbCBD Phyto Agon 2,500 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor AM251 Syn Agon 39 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor AEA Endo Agon 18 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor CBD Phyto Antag NA HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor CP55940 Syn Agon 5 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor HU210 Syn Agon 26 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor LPI Endo Agon 200 HEK293 ERK Oka et al., 2007

GPR55 Receptor Noladin

Ether

Endo Agon 10 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor O-1602 Syn Agon 13 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor OEA Endo Agon 440 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor PEA Endo Agon 4 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor THC Phyto Agon 8 HEK293 GTPγS Ryberg et al., 2007

GPR55 Receptor Virodhamine Endo Agon 12 HEK293 GTPγS Ryberg et al., 2007

κOP Receptor SR141716A Syn InvAg NA CB1 KO GTPγS Zádor et al., 2015

MAGL Enzyme CBG Phyto Antag 95,700 COS 2-AG met De Petrocellis et al., 2011

MAGL Enzyme THCA Phyto Antag 46,000 COS 2-AG met De Petrocellis et al., 2011

µOP Receptor Noladin

Ether

Endo NCAnt NA CB1 KO GTPγS Zádor et al., 2012

µOP Receptor SR141716A Syn Antag NA CB1 KO GTPγS Cinar and Szücs, 2009

µOP Receptor THC Phyto Agon NA Rat in vivo Hot plate Tulunay et al., 1981

Na+ channel Ion Channel Ajulemic

acid

Syn Antag ∼3,000 HEK293 Na+ current Foadi et al., 2014

nAChR a4β2 Receptor AEA Endo Antag NA SH-EP1 Na+ current Spivak et al., 2007

nAChR α7 Receptor 2-AG Endo Antag 118 X. oocytes Na+ current Oz et al., 2004

nAChR α7 Receptor AEA Endo Antag 30 X. oocytes Na+ current Oz et al., 2003

nAChR α7 Receptor CBD Phyto Antag 11,300 X. oocytes Na+ current Mahgoub et al., 2013

nAChR α7 Receptor MA Syn Antag ∼1µmol/kg Anesth. Rat HR Baranowska et al., 2008

NCX1 Transporter AEA Endo Antag 4,700 Rat

myocytes

Na+/Ca++ Kury et al., 2014

NMDA Receptor AEA Endo Agon NA Rat ICV BP Malinowska et al., 2010

NMDA Receptor AEA Endo Agon NA Rat HCX Ca++ current Yang et al., 2014

TRPA1 Ion Channel AM251 Syn Agon 10,000 CHO [Ca++]i Patil et al., 2011

TRPA1 Ion Channel CBD Phyto Agon 110 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPA1 Ion Channel CBG Phyto Agon 700 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPA1 Ion Channel THC Phyto Agon 230 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPM8 Ion Channel CBD Phyto Antag 60 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPM8 Ion Channel CBG Phyto Antag 160 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPM8 Ion Channel THC Phyto Antag 160 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPV1 Ion Channel AM251 Syn Agon 10,000 CHO [Ca++]i Patil et al., 2011

TRPV1 Ion Channel AM630 Syn Agon 10,000 CHO [Ca++]i Patil et al., 2011

(Continued)
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TABLE 2 | Continued

Target Target type Ligand Ligand type Activity Potency (EC50, nM) System Assay References

TRPV1 Ion Channel CBD Phyto Agon 1,000 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPV1 Ion Channel CBG Phyto Agon 1,300 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPV2 Ion Channel CBD Phyto Agon 1,250 HEK293 [Ca++]i De Petrocellis et al., 2011

TRPV2 Ion Channel THC Phyto Agon 650 HEK293 [Ca++]i De Petrocellis et al., 2011

ICSS, intracranial self stimulation; HR, heart rate; BP, blood pressure; MAPK act, MAPK activation; Cat. current, Cation current; AEA, arachidonoyl ethanolamide or anandamide;

MA, methanandamide; CBD, cannabidiol; CBG, cannabigerol; Agon, agonist; NCAnt, non-competitive antagonist; Antag, antagonist; NDG, nodose ganglion; Cx, culture; Lig. displ.,

displacement of ligand binding; MFB, medial forebran bundle.

of GPR55 signaling may also involve interaction with other
receptors including CB1. GPR55 and CB1 have been shown to
heterodimerize within rat andmacaque striatum, possibly related
to a role in motor behaviors. When co-expressed in HEK293
cells, CB1 and GPR55 antagonize respective agonist effects to
promote ERK1/2 activation (Martínez-Pinilla et al., 2014).

The physiological significance of GPR55 expression in brain
remains an open question; although, some evidence indicates a
role in controlling ingestive behaviors (reviewed by Liu et al.,
2015). A role in promoting appetite makes sense as it has been
reported that GPR55 regulates peripheral metabolism and energy
homoeostasis (reviewed by Simcocks et al., 2014). Deletion of
GPR55 in mice has subtle effects on motor coordination, but it
has shown no significant effect on several learning and memory
tests, in contrast to the role of CB1 signaling, and despite dense
GPR55 expression in hippocampus, striatum, and cortex (Wu
et al., 2013). Spinal cord expression of GPR55 is upregulated in
a chronic constriction injury model of neuropathic pain; this
suggests that it may mediate some of the analgesic effects of N-
arachidonoyl-serotonin (AA-5-HT, Malek et al., 2016). GPR55
activation by some agonists increases calcium release from
intraneuronal stores and inhibits M-type potassium current,
both tending to promote neuronal activity (Lauckner et al.,
2008). These effects may be important in the context of CBD’s
ability to antagonize the receptor, as this non-psychoactive
phytocannabinoid has recently been shown effective for the
treatment of Dravet syndrome, a formerly intractable form
of childhood epilepsy (Devinsky et al., 2017). Whether the
efficacy of CBD in this syndrome involves GPR55 antagonism,
or perhaps, involves some combination of the many other
established targets of this drug (see Table 2) remains to be
resolved. Other evidence for potential roles for GPR55 signaling
includes: distinct expression in rod cells of primate retina
suggesting a role in low-light vision (Bouskila et al., 2013) and;
expression in microglia that, following LPI activation, acts to
protect hippocampal neurons from excitotoxicity (Kallendrusch
et al., 2013).

GPR55 in Cancer
Despite the numerous studies illuminating the physiological
functions of GPR55 in the CNS described above (section GPR55
in CNS), limited information is available about the role of this
receptor in cancer. GPR55 is expressed in different cancer cell
types raising the possibility that it may be a target for cancer
chemotherapeutic agent development (reviewed by Falasca and

Ferro, 2016). Much of the research conducted thus far indicates
that GPR55 promotes tumor formation. GPR55 expression
was examined in human tumor biopsy samples from breast,
pancreatic, and glioblastoma patients (Andradas et al., 2011). In
this study, high levels of GPR55 were strongly correlated with
the aggressiveness of the malignancy. Additional evidence for
GPR55-promotion of malignancy includes; (1) elevated levels of
its endogenous ligand lysophosphatidylinositol (LPI) in ovarian
cancers (Xiao et al., 2001) and; (2) exogenous LPI promotion
of proliferation and migration of various cancer cell lines (Ford
et al., 2010; Piñeiro et al., 2011). However, when GPR55 is
activated by the endocannabinoid, AEA, cholangiocarcinoma
cell survival is inhibited. AEA induces cholangiocarcinoma
cell apoptosis by recruiting Fas death receptors into lipid
rafts and activating the JNK signaling pathway (DeMorrow
et al., 2007; Huang et al., 2011). Genetic disruption of GPR55
receptor expression using shRNA blocked the antiproliferative
effects of AEA in vitro and in vivo (Huang et al., 2011).
Of note, AEA-induced cell death was not reversed in the
presence of CB1- (SR141716A) or CB2- (SR144528) selective
antagonists although each cannabinoid receptor was expressed
(DeMorrow et al., 2007). These findings suggest that AEA elicits
antiproliferative effects on cholangiocarcinoma that are GPR55-
dependent and CB receptor-independent. Other deorphanized
GPCRs, including GPR18 and GPR35, have been identified
as modulators of tumorigenesis (Okumura et al., 2004; Qin
et al., 2011); however, the role of cannabinoid ligands in
these systems is unclear. Examination of the deorphanized
cannabinoid receptors in cancer will provide greater insight
into their impact on tumor development and progression. In
addition, determining whether classical cannabinoids mediate
their effects through the deorphanized receptors will shed light
on mechanisms of their antitumor activity.

GPR18 in CNS
Interestingly, microglia migration is stimulated by activation
of a second formerly orphan cannabinoid-related receptor,
GPR18 (McHugh et al., 2010). This Gi/o-coupled receptor was
originally reported to be highly-expressed in testes and spleen
(Gantz et al., 1997); yet, it clearly is also functional within
brainstem (Penumarti and Abdel-Rahman, 2014b). GPR18 is
activated by N-arachidonoyl glycine (NAGly, Kohno et al.,
2006) that is a product of anandamide metabolism (Aneetha
et al., 2009; Bradshaw et al., 2009). It is also activated by
abnormal cannabidiol (abn-CBD) that, when infused into regions
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TABLE 3 | Summary of cancer-relevant non-cannabinoid receptor targets.

Cancer type Cell line Drug Target Activity Cellular response Assay Reference

Colon and colorectal

cancer

HT29 AEA FAAH Substrate Reduced cell death Adherent cell count Patsos et al., 2005

HCA7 AEA COX-2 Substrate Cell death Adherent cell count Patsos et al., 2005

HCT116

Caco-2

CBG TRPM8 Antagonist Apoptosis • Caspase 3/7 activity

• DNA fragmentation

Borrelli et al., 2014

SW480

HT29

WIN Phosphatase Increased

expression,

Activation

Apoptosis • PARP cleavage

• TUNEL

Sreevalsan and Safe,

2013

SW480 WIN Phosphatase Increased

expression

Reduced proliferation,

Apoptosis

• Cell number

• PARP cleavage

• Caspase 3

Sreevalsan et al., 2011

Brain tumor:

Glioma Ge227

Ge258

U87

U251

AEA TRPV1 Agonist Apoptosis DNA fragmentation Contassot et al.,

2004b

U87 CBD TRPV2 Agonist,

Increased

expression

Increased

chemotherapeutic

sensitivity,

Inhibition of cell migration

• MTT (cell viability)

• Chemotaxis (cell

migration)

Nabissi et al., 2013

H4 MA COX-2 Increased

expression

Apoptosis • Caspase

• PARP cleavage

Eichele et al., 2006

GSC patient

derived

CBD TRPV2 Agonist,

Increased

expression

Increased differentiation,

Autophagy,

Reduced proliferation

• Flow (differentiation)

• LC3I, LC3II

(autophagy)

• MTT (proliferation)

Nabissi et al., 2015

Neuroblastoma N1EE-115 AEA FAAH Substrate Reduced cell death • MTT Hamtiaux et al., 2011

Prostate LNCaP WIN Phosphatase Increased

expression

Reduced proliferation,

Apoptosis

• Cell number

• PARP cleavage

• Caspase 3

Sreevalsan et al., 2011

Non-melanoma skin

cancer

JWF2 AEA COX-2 Substrate Apoptosis • PARP cleavage

• Caspase 3

Kuc et al., 2012

JWF2 AEA FAAH Substrate Reduced apoptosis • PARP cleavage

• Caspase 3

• TUNEL

Kuc et al., 2012

Lung cancer A549

H460

CBD PPARg

COX-2

Activation of

PPARg & COX-2,

Increased COX-2

expression

Apoptosis,

Reduced tumor growth

(xenograft)

DNA fragmentation Ramer et al., 2013

Murine lung cancer L1C2 MA COX-2 Expression and

activity

Increased tumor growth Tumor volume Gardner et al., 2003

HeLa MA PPARg

COX-2

Activation of

PPARg & COX-2,

Increased COX-2

expression

Apoptosis DNA fragmentation Eichele et al., 2009

Cervical cancer HeLa

Caski

CC299

AEA TRPV1 Agonist Apoptosis • subG0/G1

• Caspase 7 cleavage

Contassot et al.,

2004a

Cholangiocarcinoma Mc-ChA-1 AEA GPR55 Activation Apoptosis Annexin V DeMorrow et al., 2007

Multiple myeloma RPMI,

U266

CBD TRPV2 Agonist Necrosis,Cell

death,Increased

therapeutic sensitivity

• Propidium iodide

(necrosis)

• MTT (cell death)

Morelli et al., 2014

AEA, arachidonoyl ethanolamide or anandamide; FAAH, fatty acid amide hydrolase; CBG, cannabigerol; TRPM8, transient receptor potential cation channel subfamily M member

8; WIN, WIN55212-2; CBD, cannabidiol; MA, methanandamide; PPARg, peroxisome proliferator-activated receptor gamma; COX-2, cyclooxygenase-2; TRPV1, TRPV2, transient

receptor potential cation channel subfamily V members 1 and 2; GPR55, G protein-coupled receptor 55; MTT, 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide; PARP, Poly

(ADP-ribose) polymerase; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling.
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of the brainstem, causes reduction in blood pressure in a
manner that involves nitric oxide synthase and adiponectin
signaling (Penumarti and Abdel-Rahman, 2014a). As with
GPR55 discussed above (section GPR55 in CNS), GPR18
receptor expression is upregulated following spinal cord injury;
this suggests that it may mediate some of the analgesic effects
of N-arachidonoyl-serotonin (AA-5-HT, Malek et al., 2016).
Notably, the principal active constituent of Cannabis, THC, is
a potent agonist of GPR18 when expressed in HEK293 cells
(McHugh et al., 2012). The lesser Cannabis constituent, CBD,
along with synthetic CB agonists CP55940 and WIN55212-
2, have no activity at physiologically-relevant concentrations.
Potent GPR18 activation by THC and NAGly has been suggested
to underlie efficacy to resolve inflammatory pain (Burstein et al.,
2011; McHugh et al., 2014; Crowe et al., 2015). Some controversy
about GPR18 signal transduction was raised when NAGly failed
to inhibit Ca++ currents following heterologous expression and
agonist stimulation in rat superior cervical ganglion neurons (Lu
et al., 2013). Whether this is a special case of system-dependent
functional selectivity, or an indication that NAGly modulates
neuronal activity via other receptor systems, remains an open
question.

GPR119 in CNS
A third relevant G-protein-coupled receptor, GPR119, has been
deorphanized. In humans, GPR119 was initially reported to
be expressed only outside of CNS, most notably in pancreas,
suggesting a peripheral metabolic function (Fredriksson et al.,
2003). A possible CNS expression difference between human
and rodent species is suggested in a patent application
that indicates GPR119 is also expressed at high density in
rat and mouse brain (Bonini et al., 2002). Mouse CNS
expression is confirmed by high-affinity GPR119 binding
and potent efficacy to reduce seizure-related hippocampal
activity (Scott et al., 2014). At micromolar concentrations, the
endogenous peroxisome proliferator-activated receptor alpha
(PPARα) agonist oleoylethanolamide (OEA) activates GPR119,
while anandamide appears to have partial efficacy in yeast cells
expressing the receptor (Overton et al., 2006). Notably, 2-AG,
CP55940, WIN55212-2, methanandamide, and JWH-133 did
not activate GPR119. Supporting CNS activity, and a role in
controlling ingestive behaviors, OEA and a synthetic GPR119
agonist with similar efficacy, but four-fold greater potency,
PSN632408, were found to reduce food consumption and body
weight in Sprague-Dawley rats (Overton et al., 2006). More
recent evidence suggests that PSN632408 may lack selectivity for
GPR119 in peripheral tissues (Ning et al., 2008). Despite evidence
of GPR119 CNS activity, this receptor is being most closely
studied in as a target for treating diabetes and other metabolic
disorders (Ansarullah et al., 2013; Cornall et al., 2013, 2015).

GPR35 in CNS
A final Gi/o-coupled deorphanized receptor, GPR35, has been
reported to transduce effects of 2-arachidonyl lysophosphatidic
acid (2A-LPA) and kynurenic acid, both of which are present
at relevant concentrations within neuronal tissues. 2A-LPA is a
product of metabolism of the principal brain endocannabinoid,

2-arachidonyl glycerol (2-AG, Oka et al., 2010). Kynurenic
acid is the product of tryptophan metabolism, and is most
well-characterized as an endogenous antagonist of receptors
for the principal excitatory neurotransmitter, NMDA (Stone
et al., 2013). A very recent structure-activity study has led
to identification of several potent GPR35 agonists and three
structures critical for efficacy (Abdalhameed et al., 2017). GPR35
is expressed most predominantly in the gastrointestinal tract
and in leukocytes (Wang et al., 2006). Low-level expression
of GPR35 in brain reduces the likelihood that it significantly
modulates neuronal activity within this region of the CNS.
Within spinal cord, on the other hand, convincing evidence
demonstrates functionally-relevant expression of GPR35, with
distinct enrichment within murine dorsal horn ganglia (Cosi
et al., 2011). In an acetic acid-induced pain assay, both
kynurenic acid, and the phosphodiesterase inhibitor, zaprinast,
were found to produce significant analgesia with EC50s of
about 100 and 1 mg/kg, respectively. Note zaprinast is an
effective agonist of GPR35 with a particularly high potency
at rat vs. human forms of the receptor (Taniguchi et al.,
2006). Homology between GPR35, and other LPA receptors,
may suggest that 2A-LPA is more relevant than kynurenic
acid as an endogenous modulator (Zhao and Abood, 2013).
Clearly, more needs to be learned and understood about GPR35
signaling.

Opioid Receptors in CNS
Evidence implicating interaction between cannabinoid and
opioid signaling systems began to accumulate early, and before
specific cannabinoid receptors were unequivocally identified.
For example, it was well-established by the 1980s that THC
effectively reduces symptoms of naloxone-precipitated opioid
withdrawal (Hine et al., 1975). Similarly, the analgesic efficacy
of THC was known to depend upon µ-opioid receptors
(µOP, Cox et al., 2015), as use of an irreversible antagonist
(chlornaltrexamine, that alkylates and destroys activity of µOPs)
reduces efficacy of both morphine and THC in the hotplate assay
(Tulunay et al., 1981). Using theµOP-selective radioligand, [3H]-
dihydromorphine, it was found that THC non-competitively
reduces the density of binding sites in brain membranes via
an unknown mechanism (Vaysse et al., 1987). More recently, it
has been demonstrated that augmentation of endocannabinoid
signaling using the monoacylglycerol lipase (MAGL) inhibitor
JZL184 (MAGL is an enzyme responsible for degrading the
endocannabinoid 2-AG) has efficacy similar to THC in reducing
opioid withdrawal symptoms. This suggests MAGL as a potential
target for managing opioid addiction (Ramesh et al., 2011).

More progress has been made since development of CB1/CB2
receptor-deficient mice and availability of selective antagonists.
Interestingly, when using CB1 knockout mice with the CB1-
selective cannabinoid antagonist/inverse agonist SR, it was
found that SR effectively reduces both basal levels of G-protein
activation and the ability of the µOP peptide agonist, DAMGO,
to stimulate GTPγS binding (Cinar and Szücs, 2009). These
results were obtained using mouse cortical membranes (where
µOP and CB1 are normally both distinctly expressed), and there
was no difference in efficacy across tissue obtained fromwild type
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and CB1 knockout animals, clearly demonstrating a non-CB1-
related mechanism for SR’s inverse agonist activity (although
not excluding the possibility that CB1 constitutive activity drives
inverse agonism in other systems). Additional experiments using
CB1 and µOP transfected CHO cells revealed that micromolar
concentrations of SR are able to displace ligands bound to µOPs,
demonstrating an interesting direct SR-µOP interaction.

The nature of this SR-µOP interaction was further
explored by demonstrating that both SR and the 2-AG-
related endocannabinoid noladin ether are both able to potently
antagonize DAMGO-stimulated GTPγS binding in membranes
taken from wildtype animals (Zádor et al., 2012). In membranes
from CB1 deficient mice, both SR and a combination of SR
and noladin ether reduced the efficacy of DAMGO to stimulate
GTPγS binding, without altering potency, suggesting µOP-CB1
interaction, and non-competitive antagonism of µOP in the
absence of CB1. These studies employing DAMGO, relevant to
µOP activity, were extended to employ the δ-opioid receptor
(δOP) selective peptide agonist DPDPE. In CHO cells expressing
δOP, SR reduced basal GTPγS activation with an EC50 ∼ 1µM.
SR also non-competitively antagonized DPDPE stimulation
of GTPγS binding to an extent similar to that achieved by
the competitive δOP antagonist, naltrindole (Zádor et al.,
2014). Completing evaluation of SR interaction with the three
primary opioid receptor subtypes, the same group demonstrated
SR displaces binding of the κ-opioid receptor (κOP) agonist
U-69,593 from membranes prepared from transfected CHO
cell membranes. Using these transfected cells in vitro, SR was
found to inhibit basal levels of κOP activation in a manner
antagonized by the κ-selective antagonist, nor-BNI, suggesting
that SR is a κOP inverse agonist. In both CB1 deficient and
wildtype mice, systemic pretreatment of animals with a low,
0.1 mg/kg dosage of SR decreased efficacy of the κOP peptide
agonist, dynorphin A to activate GTPγS binding in preparations
of brain membranes (Zádor et al., 2015). The magnitude of
efficacy reductions following SR pretreatment was similar across
CB1 knockouts and wildtype animals, and the potency was
not altered, suggesting that SR acts to effectively reduce κOP
density. Behavioral tests demonstrated an anxiolytic effect of
low-dose (0.1 mg/kg subcutaneous) SR treatments, perhaps
contrasting with established dysphoric effects of higher doses in
other systems, including humans.

Related to morphine dependence, is evidence indicating that
chronic morphine treatment of rats results in upregulation
of both CB1 protein and mRNA encoding the receptor (Jin
et al., 2014). Morphine-induced CB1 expression was also
associated with cytokine release, including IL-6, and, most
notably, IL-1B, in various brain regions, including cortex,
hippocampus, cerebellum, and brain stem. Coincidently, CB1
upregulation and cytokine release implicate both cannabinoid
signaling and immune responsiveness in effects associated with
opioid dependence. Interestingly, the microRNA let-7d and CB1
receptors reciprocally downregulate each other in transfected
SH-SY5Y cell cultures (Chiarlone et al., 2016). Let-7d-expressing
SH-SY5Y cells show decreased sensitivity to methanandamide
and morphine in stimulating ERK phosphorylation and a high
degree of cross-tolerance following chronic treatments with

the cannabinoid- and opioid agonists. Perhaps related to this
interaction is evidence for efficacy of the opioid antagonist
naltrexone (currently indicated for managing alcoholism) in the
treatment of Cannabis dependence (Haney et al., 2015).

Serotonin Receptors in CNS
5-HT3 Ligand-Gated Cation Channels in CNS
As with other systems, evidence for cannabinoid modulation
of serotonin signaling was obtained soon after CB1 receptors
were identified. This evidence began to accumulate through
studies of the rat nodose ganglion which conducts afferent
transmission from GI, heart, and lung. Activity in this ganglion
is increased by the 5-HT3 subtype of serotonin-gated cation
channels. Using the synthetic agonists CP55940 and WIN,
and the most well-established endocannabinoid at the time,
anandamide, it was discovered that each of these agonists
non-competitively antagonizes serotonergic activation of 5-HT3
receptors at nanomolar concentrations (Fan, 1995). The inability
to modulate cannabinoid effects on 5-HT3 activity with guanyl
nucleotides suggested a non-G-protein dependent mechanism,
and possible direct interaction with the ion channel. This finding
raised speculation that analgesic and antiemetic efficacy of
cannabinoid agonists may, at least in part, be attributable to
5-HT3 antagonism.

Effects in the isolated tissue preparation described above
were corroborated by results of experiments using a human
5-HT3A-expressing CHO cell line (Barann et al., 2002). In
patch clamp studies it was found that a series of synthetic,
endogenous, and phytocannabinoid agonists potently inhibited
serotonin activation of 5-HT3 cation channels. Notably, the
phytocannabinoid THC was the most potent compound
evaluated with EC50 ∼ 40 nM. Cannabinoid antagonism was
not inhibited by the CB1-selective antagonist SR. Specific
binding of a 5-HT3-selective radioligand wasn’t displaced by the
cannabinoids employed, suggesting interaction with an allosteric
site that doesn’t influence serotonin affinity.

5-HT1A GPCRs in CNS
The 5-HT1A subtype of serotonin receptors are notably
associated with presynaptic distribution, where, similar
to CB1 receptors, their activation reduces probability of
neurotransmitter release. Although this type of presynaptic
autoreceptor mechanism is well-characterized for 5-HT1A, the
distribution of these receptors is wide, and it includes both
excitatory and inhibitory terminals, making prediction of effects
produced by modulators difficult.

Multiple lines of evidence suggest that the enigmatic non-
psychotropic phytocannabinoid CBD exerts at least some of its
actions through agonism of 5-HT1A autoreceptors (McPartland
et al., 2015). First, CBD displaces specific binding of the 5-HT1A-
selective radioligand [3H]8-OH-DPAT, activates GTPγS binding
and inhibits adenylyl cyclase activity in heterologously expressing
CHO cell cultures (Russo et al., 2005). Second, 5-HT1A receptor
expression is upregulated under conditions of neuropathic pain
in a manner that is reduced by cannabinoid agonism (Palazzo
et al., 2006). Finally, microinfusion of CBD into the bed nucleus
of the stria terminalis (BNST) dose-dependently reduces anxiety
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as measured by both elevated plus maze and Vogel conflict tests
(Gomes et al., 2011).

These anxiolytic CBD responses are reversed by pretreatment
with the 5-HT1A-selective agent WAY-100635 (WAY) that has
been reported to be a neutral antagonist, although agonism at
D4 dopamine receptors has also been reported (Chemel et al.,
2006). Recently, WAY-reversible anxiolytic effects of CBD as
measured in the elevated plus maze have been confirmed by
others (Fogaça et al., 2014). CBD mitigation of acute restraint
stress was also found, although, perhaps importantly, this effect
was more resistant to WAY antagonism, possibly suggesting
involvement of another target in stress vs. anxiety responses.
Interestingly, anxiolytic effects of both CB1 and 5-HT1A agonists
have been reported in a non-mammalian teleost fish, suggesting
a conserved relationship between cannabinoid and serotonergic
signaling in responding to stress (Connors et al., 2014).

Extending studies of CBD anxiolysis that are reversed by
the 5-HT1A antagonist WAY, mitigation of nausea as measure
in the rat gaping model (Rock et al., 2014), reduction of both
neuropathic pain (Ward et al., 2014) and panicolytic effects
(Twardowschy et al., 2013) have all been reported. In the context
of drug abuse, CBD antagonizes effects of morphine to reduce
threshold intracranial self-stimulation responding—ameasure of
drug reward. CBD antagonism of morphine reward was reversed
by microinjection of WAY into dorsal raphe, further implicating
5-HT1A involvement (Katsidoni et al., 2013). More recently,
CBD has been reported to have rapid-onset antidepressive
efficacy that is dependent upon 5-HT1A activation (Linge et al.,
2016).

Other Serotonin Receptors in CNS
Physiological interactions, where activity of one signaling system
influences activity of another, have been documented to occur
between cannabinoid and serotonergic signaling in models of
chronic pain (Campos et al., 2013); epilepsy (Devinsky et al.,
2014); stress-induced analgesia (Yesilyurt et al., 2015) and;
tic disorders (Ceci et al., 2015). These studies reinforce the
possibility of using inhibitors of endocannabinoid uptake and
metabolism therapeutically.

Adenosine Receptors in CNS
Adenosine signaling in CNS is largely terminated by
reuptake, making inhibitors of the transporter indirect-
acting adenosinergic agonists. Such agents have shown
anti-inflammatory efficacy via inhibiting release of immune
mediators like TNFα (Noji et al., 2002). Interestingly, the
phytocannabinoid CBD, discussed above, in the context of
5-HT1A agonism (5-HT1A GPCRs in CNS), appears to inhibit
immunosuppressive effects via direct interaction with, and
antagonism of, an adenosine transporter (Carrier et al., 2006).
CBD anti-inflammatory effects were absent in adenosine
A2A knockout mice, and reversed by a selective antagonist,
implicating indirect agonism of A2A receptors as the mechanism
of CBD-mediated immunosuppression.

Antagonists of adenosine receptors are established
psychomotor stimulants. In the context of movement
disorders, A2A receptors are expressed at high levels within

the inhibitory indirect dopaminergic pathway of vertebrate
striatum. Interneurons in this region also robustly express
presynaptic CB1 receptors that inhibit activity of the inhibitory
pathway, resulting in an overall activation of movement-related
striatal signaling. Experiments employing CB1 deficient mice
found these animals to be resistant to the psychomotor stimulant
effect of adenosine receptor antagonists (Lerner et al., 2010).
Further investigation found that the A2A-selective antagonist,
SCH442416, doubled the concentration of the endocannabinoid,
2-AG, within striatum, but not cortex. Increased 2-AG release
was associated with decreased indirect pathway activity as
measured electrophysiologically. These results demonstrate
that the psychomotor efficacy of A2A antagonists involve,
to some extent, indirect endocannabinoid agonism. More
recently it has been discovered that CB1-mediated disruption of
memory consolidation is mitigated by A2A antagonism, further
elaborating the co-dependence of cannabinoid and adenosinergic
signaling (Mouro et al., 2017).

Excitatory Amino Acid Receptors in CNS
NMDA Receptors in CNS
Given general sedative effects of cannabinoid agonists, it isn’t
surprising that these agents act, at many sites, to reduce
release of the principal excitatory neurotransmitter, NMDA.
This was found to clearly be the case in rat brain slice
preparations for synthetic agonists (Shen et al., 1996) and
both the endocannabinoid anandamide and phytocannabinoid
THC. Inhibitory effects of THC and anandamide were reversed
in the presence of both the CB1-selective antagonist SR and
Gi inhibitor pertussis toxin implicating cannabinoid-receptor
involvement (Hampson et al., 1998). But, in the presence of
SR, anandamide potentiation of NMDA-induced currents were
noted. This stimulatory effect of anandamide was also observed
in Xenopus oocytes expressing NMDA receptor (NMDAR)
subunits, suggesting a direct agonist interaction with these cation
channel proteins.

With similarities to results of experiments done in slice
preparations, additional evidence for anandamide interaction
with NMDA receptors derives from studies of the complex
cannabinoid modulation of blood pressure control in rats
(Malinowska et al., 2010). In this system, it was discovered that
anandamide produces a pressor effect in the presence of the CB1-
selective antagonist, SR. This increase in pressure was partially
reduced by the NMDA receptor-selective antagonist MK-801,
suggesting a possible direct interaction with relevance to central
control of blood pressure.

More recently, the interaction of anandamide and NMDAR
activation has been more elaborately studied through a
series of electrophysiology studies in rat hippocampal sections
and dissected cells (Yang et al., 2014). These experiments
demonstrated that CA1 pyramidal cell NMDAR activation
by anandamide was reversed in the presence of the TRPV1
antagonist capsazepine, raising the possibility of vanilloid
receptor involvement in the anandamide effects discussed above.
2-AGwas also studied in these experiments and found to produce
a similar potentiation of NMDAR activation, although distinct
in that it was not blocked by TRPV1 antagonism. Interestingly,
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the efficacy of 2-AG was increased when delivered intracellularly,
suggesting interaction with NMDAR or other protein domains
inside the neuron.

It has long been suspected that Cannabis abuse increases
risk of psychoses (Colizzi et al., 2016). In a mouse model of
NMDAR antagonist-precipitated psychosis (MK-801), the
CB1-selective antagonist AM 251 reduced behavioral symptoms,
including hyperactivity (Kruk-Slomka et al., 2016). Interestingly,
CB1-antagonism also improved psychosis-related memory
impairments in this model, suggesting a possible role for
endocannabinoid signaling in the memory deficits associated
with schizophrenia and bipolar disorder.

AMPA Receptors in CNS
An early Xenopus oocyte expression study examining sensitivity
of various AMPA receptor subunit compositions demonstrated
that high concentrations of anandamide (EC50 > 100µM)
effectively inhibit/s AMPA agonist-initiated currents (Akinshola
et al., 1999). Anandamide inhibition was not reversed by
SR, as expected in the CB1-deficient expression system, and
similar efficacy was not observed for the synthetic agonist
WIN. Enhancement of anandamide’s effect was produced by
addition of forskolin, a direct adenylyl cyclase activator, and
partially reversed by cyclase inhibitors, implicating this enzyme
in mediating the effect.

An interesting physiological interaction between
endocannabinoid and AMPA receptor signaling has been
reported in chicken embryo spinal cord (Gonzalez-Islas et al.,
2012). In this system, a basal endocannabinoid tone inhibits
activity of motor neurons which decreases spontaneous
activity. Reversal of endocannabinoid tone via application of
the CB1-selective antagonist, AM 251 resulted in an increase
of spontaneous activity that, over 2 days, resulted in AMPA
receptor desensitization, implicating endocannabinoid signaling
in regulation of motor activity during development.

Metabotropic Glutamate Receptors in CNS
Physiological interaction of metabotropic glutamate receptors
(mGluR) and endocannabinoid signaling has been reported in
striatal and hippocampal slice preparations (Jung et al., 2005). In
this system, activation of the mGluR5 receptor subtype resulted
in release of the endocannabinoid 2-AG but not anandamide.
This finding implicates 2-AG as the endocannabinoid involved
in mediating AMPA receptor-induced plasticity important to
processes of learning and memory.

Inhibitory Amino Acid Receptors in CNS
GABA and glycine are amino acid transmitters that activate
inhibitory chloride channels, and in the case of GABAB, Gi/o-
coupled metabotropic receptors that activate inhibitory inwardly
rectifying K+ flow. Overall sedative effects of cannabinoid
agonists made positive regulation of these inhibitory amino
acid transmitter systems seem likely, although clear evidence of
interaction with GABAergic signaling systems has emerged only
recently.

GABA Receptors in CNS
In the case of cannabinoid receptor-independent effects on
GABAergic signaling, in hippocampal slice preparations it has
been found that WIN55212-2 and anandamide (but not 2-AG)
potentiate GABA release within rat dentate gyrus. This release
promoted measurable inhibitory post-synaptic currents (IPSCs)
measured by electrophysiology. The fact these WIN55212-2 and
anandamide-promoted currents were resistant to both CB1- and
CB2-selective antagonists in tissues taken from CB1 deficient
mice, is evidence that they are the result of interaction with a yet
uncharacterized target (Hofmann et al., 2011). Interestingly, the
agonist specificity (WIN55212-2 and anandamide) of this IPSC
effect is similar to that discovered earlier in GTPγS binding assays
employing mouse tissue (Breivogel et al., 2001) suggesting that
the same target is responsible.

In the context of behavior, 2-AG has been shown to
reduce locomotor activity in CB1/CB2 double knockout mice
(Sigel et al., 2011). Unfortunately only endocannabinoids
were investigated in this study leaving open the question
of WIN55212-2 activity that is implicated by earlier studies
mentioned above. Hypermotility was observed in mice deficient
for the GABAA B2 subunit. When heterologously expressed in
Xenopus oocytes, it was found that electrophysiological effects
of 2-AG were only observed in systems producing B2 protein,
suggesting this subunit is required for 2-AG interaction with
GABAA. B2/2-AG interaction has been further supported by
modeling and studies of the effect of amino acid substitutions
(Baur et al., 2013). This work has recently been extended to a slice
preparation model that demonstrates 2-AG influences GABAA

signaling under physiologically-relevant conditions (Golovko
et al., 2014). This physiological modulation involves both
synaptic and extrasynaptic populations of GABAA receptors
enhancing the former and inhibiting the latter in a manner to
potentiate overall GABAergic inhibition (Brickley and Mody,
2012).

Endocannabinoid regulation of spinal nociceptive vs. non-
nociceptive transmission has been established in vertebrate
species (Pernía-Andrade et al., 2009). This work has been
extended to demonstrate that the endocannabinoid 2-AG
produces similar effects in a non-cannabinoid receptor-
expressing invertebrate species of leech (Higgins et al., 2013). The
target of 2-AG in this animal appears to be a TRPV channel, as
a selective antagonist blocked the effect. Interestingly, the 2-AG
effect to potentiate non-nociceptive vs. nociceptive transmission
was antagonized by the GABAA-selective agent, bicuculline,
suggesting a potential TRPV-GABAergic relationship in this
physiological system.

Glycine Receptors in CNS
Evidence for direct interaction of the endocannabinoids
anandamide and 2-AG and glycine receptors were first
reported from electrophysiological studies employing primary
neuronal cell cultures and hippocampal slice preparations
(Lozovaya et al., 2005). These experiments demonstrated that
anandamide, 2-AG and the synthetic agonist WIN55212-
2 inhibit glycine receptor conductance post-synaptically,
and accelerate desensitization. This effect contrasts with the
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retrograde, presynaptic endocannabinoid mechanism that has
been better characterized to date. Glycine receptor inhibition
was observed in the presence of CB1, CB2, and vanilloid receptor
antagonists, suggesting a direct agonist mechanism.

Complicating the picture, in a different Xenopus oocyte
expression system, anandamide agonism of glycine receptors
was discovered (Hejazi et al., 2006). These studies extended
the effect to include the phytocannabinoid, THC. In an
additional heterologous expression system, using HEK293 cell
cultures expressing various glycine receptor subunits, an even
more complex picture emerged (Yang et al., 2008). In these
studies, anandamide and HU210 potently activated α1 subunit-
containing glycine receptors. In contrast, the synthetic agonists
HU210, HU308, and WIN55212-2 each potently (EC50 38—
3030 nM) inhibited the α2 subunit-mediated currents, while
the endocannabinoid NAGly (discussed above as a GPR18
agonist) activated it at high concentration. Efficacy and potency
of glycine receptor inhibition varied with differential subunit
expression. These types of apparent conflicts in pharmacological
literature are common and, as we see with glycine receptors, are
often attributable to different physiological/expression systems
employed (Urban et al., 2007).

Cholinergic Receptors in CNS
Anecdotes have long suggested interaction between cannabinoid
and nicotinic cholinergic signaling systems. This relationship is
supported by behavioral (Pryor et al., 1978) and more recently
biochemical evidence that demonstrates nicotine modulates
multiple effects of the phytocannabinoid, THC (Valjent et al.,
2002).

A direct mechanism underlying cannabinoid interaction with
nicotinic receptors has been revealed through a series of Xenopus
oocyte expression studies employing the endocannabinoid
anandamide. The first of these found that anandamide potently
inhibits nicotinic receptors comprised of α7 subunits (IC50 ∼

30 nM, Oz et al., 2003). This inhibition was not altered by CB1
or CB2 antagonists or cAMP modulating agents suggesting a
direct nicotinic receptor interaction. Anandamide inhibition of
α7-mediated currents didn’t alter nicotine potency, only efficacy,
indicating a non-competitive antagonist mechanism. The second
study expanded the array of cannabinoid agonists employed in
the system finding that only the endocannabinoids anandamide
and 2-AG produce potent inhibition (Oz et al., 2004). Notably,
THC, WIN, CP55940 did not. The final papers in this series
found that the potency of inhibitory effects of both anandamide
and ethanol are increased by their co-administration (Oz et al.,
2005) and that anandamide potently and non-competitively also
antagonizes receptors comprised of α4β2 subunits (EC50 ∼

50 nM, Spivak et al., 2007). Also, the phytocannabinoid CBD was
found to inhibit nicotinic currents, albeit less potently (EC50 ∼

11µM, Mahgoub et al., 2013).
More recently, these studies have been extended out of the

oocyte system and into in vivo models. In the first of these,
the non-hydrolysable analog of anandamide, methanandamide,
was found to effectively antagonize nicotinic receptors present
in cardiac post-ganglionic sympathetic neurons (Baranowska
et al., 2008). In a second anesthetized rat model, nicotine

infusion increased activity of dopaminergic neurons in the
ventral tegmental area, a region important to reward-related
release of dopamine in nucleus accumbens. Nicotine stimulation
of this activity was found to be reversed by URB597, an indirect
cannabinoid agonist that inhibits anandamidemetabolism (Melis
et al., 2008). This effect did not extend to the hydrolysis-resistant
methanandamide, suggesting that a product of an alternate
anandamide metabolic pathway is responsible. Interestingly,
both oleoylethanolamine (OEA) and palmitoylethanolamide
(PEA) were found to have efficacies similar to anandamide. As
OEA and PEA are known agonists of peroxisome proliferator-
activated receptor-α (PPARα) activation of this receptor was
studied as the potential mechanism for nicotinic receptor
inhibition. Results revealed that PPARα activation promotes
kinase activity that increases nicotinic receptor phosphorylation
and inactivation. Whether the efficacy of anandamide, perhaps
through increasing availability of ethanolamine precursors,
depends upon a similar PPARα-related mechanism remains an
open question.

Nuclear Receptors in Cancer
Peroxisome Proliferator-Activated Receptors (PPAR)

in Cancer
PPARs are a superfamily of nuclear receptors that play
an important role in the regulation of lipid metabolism,
glucose homeostasis, cell differentiation and tumorigenesis
(Vamecq and Latruffe, 1999). PPAR transcription factors form
heterodimers with retinoid X receptor (RXR) that then bind
to peroxisome proliferator responsive elements (PPRE) and
regulate transcription of target genes. PPARs are classified
into three subtypes: PPARα, PPARδ, and PPARg. In cancer
cells, targeting PPARg with selective agonists inhibits cell
proliferation, induces programmed cell death (apoptosis and
autophagy) and promotes cell differentiation in multiple in vitro
and in vivo studies (Campbell et al., 2008).

PPARγ in Cancer
Cannabinoids increase PPARg transcriptional activity by diverse
mechanisms (reviewed in O’Sullivan, 2007). Cannabinoids can
bind and activate cell surface cannabinoid receptors which
promotes MAPK signal transduction resulting in downstream
PPARγ activation. Cannabinoid-induced PPARγ activation can
also occur independent of cannabinoid receptors by direct and
indirect mechanisms. Cannabinoids (e.g., ajulemic acid) and
endocannabinoids (e.g., AEA and 2-AG) can directly bind,
and increase the transcriptional activity of, PPARγ. Indirect
PPARγ activation occurs as a consequence of the metabolism
of endocannabinoids (2-AG, AEA) to PPARγ agonists or by
increasing the synthesis of endogenous PPAR agonists (Burstein,
2005; O’Sullivan, 2007).

Several studies have shown that PPARg mediates the
antitumor activity of cannabinoids independent of CB1 and CB2
receptors. In lung cancer cells, PPARγ activation was required for
CBD-induced apoptosis (Ramer et al., 2013). This effect of CBD
on PPARγ was mediated by production of the prostaglandins
(PGs), PGD2 and 15deoxy, 112,14 PGJ2 (15d-PGJ2) which are
PPARγ activators. Prevention of PG synthesis with a selective
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inhibitor of COX-2 activity (NS-398) or siRNA directed toward
COX-2 reduced CBD-induced PPARγ nuclear translocation and
cell death. However, the use of CB1 (AM-251), CB2 (AM-630),
or TPRV1 (capsazepine) antagonists did not alter CBD-mediated
apoptotic cell death. Furthermore, in human cervical carcinoma
cells treated with the non-hydrolysable AEA derivative, met-
AEA, apoptosis was reliant upon the production of PGD2 and
PGJ2 as well as the activation of PPARγ (Eichele et al., 2009).
These findings indicate that cannabinoid-induced prostaglandin
synthesis and the engagement of these prostaglandins with
PPARγ represents an important pathway by which cannabinoids
regulate cellular fate independent of the cannabinoid receptors.

Ion Channels in CNS and Cancer
Direct cannabinoid modulation of the activity of ionotropic
receptors have been discussed according to ligand type in the
section above. In terms of interaction with non-ligand gated ion
channels, cannabinoid receptor-stimulated G-proteins have long
been known to inhibit voltage-gated calcium channels and to
activate inward-rectifying potassium channels, consistent with
inhibition of transmitter release (Shen et al., 1996). In addition
to ligand-gated channel effects, evidence for direct cannabinoid
interaction with other non-ligand-gated ion channels has
emerged and is discussed below.

Voltage-Gated Sodium Channels in CNS
In the case of the synthetic cannabinoid, ajulemic acid that is
structurally-related to THC, patch clamp studies of HEK293 and
ND7/23 cells expressing various types of voltage-gated sodium
channels demonstrated inhibition with potencies ranging from
1 to 10µM (Foadi et al., 2014). These results suggest that the
efficacy of ajulemic acid to reduce neuropathic pain may involve
sodium channel inhibition.

Transient Receptor Potential (TRP) Cation Channels

in CNS
TRP channels are a superfamily of cation channels located on
the cell plasma membrane that control inward movement of
monovalent or divalent cations notably including Ca++. These
channels are largely sensory-related, and they are particularly
important to perception of temperature and mechanical
stimulation (Voets et al., 2005). TRP channels have already been
mentioned above (in the context of anandamide interaction
with NMDA receptors) (section NMDA Receptors in CNS). In
addition to a role in mediating peripheral afferent signaling,
TRP channels are physiologically relevant to the extraneuronal
function of vascular smooth muscle (Fernandes et al., 2012) and
are also expressed within CNS (Vennekens et al., 2012). Several
members of this family may represent “ionotropic cannabinoid
receptors” moving cannabinoid signaling into line with most
other CNS signaling systems that include both metabotropic and
ion channel targets (Akopian et al., 2009).

Several members of this family, including TRP ankyrin
type 1 (TRPA1), the vanilloid receptors types 1 and 2 (TRPV1
and TRPV2), and TRP melastatin type 8 (TRPM8), have
been identified through a remarkably ambitious and thorough
screening study as targets of an array of compounds isolated from

Cannabis (De Petrocellis et al., 2011). These phytocannabinoids
include cannabichromene (CBC), CBD, cannabidiol acid
(CBDA), cannabidivarin (CBDV), cannabidivarin acid
(CBDVA), cannabigerol (CBG), cannabigerol acid (CBGA),
cannabigivarin (CBGV), cannabinol (CBN), THC, THC acid
(THCA), and tetrahydrocannabivarin acid (THCVA). Each of
these compounds are effective agonists for TRP1A with EC50s
ranging from 90 nM to 8.4µM and a rank order of potency of
CBC > CBD > CBN > CBDV > CBG > THCV > CBGV >

THCA > CBDA > CBGA > THCVA. At TRPV1; CBD, CBG,
CBN, CBDV, CBGV, and THCV have agonist activity with EC50
< 10µM (the most potent compound being CBD with EC50
= 1µM). At TRPV2, several of the compounds had agonist
activity with a rank order of potency= THC > CBD > CBGV >

CBG > THCV > CBDV > CBN (EC50 ranging from 650 nM to
19µM). Finally, at TRPM8, each of the compounds were found
to effectively antagonize icilin-stimulated Ca++ conductance
with a rank order of potency = CBD > CBG > THCA > CBN
> THCV > CBDV > CBGA > THCVA > CBGV > CBDA and
IC50s ranging from 60 nM to 4.8µM.

Interestingly, the synthetic cannabinoid compounds AM251
and AM630, that are CB1- and CB2-selective antagonists/inverse
agonists, respectively, have been found to activate Ca++

channels in primary cultures of trigeminal nerve neurons (Patil
et al., 2011). When evaluated in CHO cell culture systems
heterologously expressing TRP1A and TRPV1 channels, it was
found that both CB receptor antagonists have agonist activity
at TRP1A but not TRPV1. These findings suggest that in vivo
AM251 and AM630 may activate sensory neurons via TRP1A
agonism.

Focus on TRPV1 in CNS
Also known as capsaicin receptors or vanilloid receptors, these
promiscuous cation channels are both temperature- and pH-
sensitive. They are also capable of ligand activation, notably
by capsaicin (the active constituent of spicy peppers). Shortly
after its isolation and identification as the first endogenous
cannabinoid present in brain, anandamide was found to interact
with a non-cannabinoid receptor target: TRPV1 (Zygmunt
et al., 1999). The relationship between anandamide and other
endocannabinoid signaling and TRPV1 channel activity has been
the subject of excellent recent reviews (Dainese et al., 2010;Marzo
and Petrocellis, 2010; Di Marzo and De Petrocellis, 2012), and so,
only two notable recent additions, confirming the physiological
relevance of TRPV1 agonism by anandamide to neuronal activity,
will be presented here.

The first is an interesting recent study of the analgesic effects
of the fatty acid amide hydrolase (FAAH) inhibitor: URB597.
This compound reduces metabolism of the endocannabinoid,
anandamide, thereby enhancing effects of endogenous release.
Systemic administration of URB597 effectively reduces measures
of neuropathic pain in the rat chronic constriction injury model
(Starowicz et al., 2013). Analgesic efficacy of URB597 was
maintained in the presence of the CB1-selective antagonist,
AM251. However, pretreatment of animals with the potent
TRPV1 antagonist, iodoresiniferatoxin, reversed effects
of URB597. These important results reinforce the role
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of endocannabinoid signaling in pain sensation, and they
demonstrate that agonism of the TRPV1 subtype of vanilloid
receptors is important to this type of analgesic efficacy of
anandamide.

A second recent study employed mouse hippocampal cultures
of CA1 presynaptic CB1-expressing GABAergic neurons and
post-synaptic pyramidal neurons. Activities of both neuron types
were studied simultaneously via an ambitious paired patch
clamping technique (Lee et al., 2015). As expected, post-synaptic
depolarizations were associated with increased 2-AG release and
diffusion, ultimately resulting in presynaptic CB1 activation.
In the case of perisomatic input to pyramidal cells, a basal
tone of 2-AG stimulation of presynaptic CB1 receptors was
found to maintain a “set point” of GABA release. This set
point was revealed by increased inhibition following application
of JZL184, an inhibitor of MAGL. As MAGL is the principal
enzyme responsible for degrading 2-AG, inhibitors like JZL184
act as indirect agonists. Interestingly, addition of PF3845,
an inhibitor of the enzyme FAAH responsible for degrading
anandamide, effectively reduced 2-AG tone, suggesting an
antagonistic relationship between the two endocannabinoids in
regulating GABAergic signaling in hippocampus. The indirect
anandamide agonist effect of PF3845 was reversed in the presence
of AMG9810, a selective TRPV1 inhibitor, demonstrating that
anandamide effectively modulates basal 2-AG tone via activation
of this post-synaptic cation channel, presumably via reduced
activity of the enzyme responsible for 2-AG synthesis, DAGLα.

TRP Cation Channels in Cancer
A growing body of evidence implicates members of the TRP
family, including TRPV1, TRPV2, and TRPM8, in calcium-
mediated signal transduction that regulates proliferation,
migration, and metastasis of cancer cells (reviewed by Déliot and
Constantin, 2015; Yee, 2015). As discussed previously, numerous
cannabinoids bind to, and modify, the activity of TRP channels.
We review TRP-mediated activity of several cannabinoids in
cancer below.

Vanilloid receptor type 1 (TRPV1) in cancer
TRPV1 Ca++ channels are located on the plasma membrane and
other subcellular organelles including the endoplasmic reticulum
(ER). TRPV1 regulates intracellular Ca++ levels by controlling
Ca++ movement across the plasma membrane and its release
from the ER and sarcoplasmic reticulum (Gallego-Sandín et al.,
2009). Establishing the relationship between TRPV1 expression
levels, and characteristics such as the tumor grade (predicted
aggressiveness of the tumor) or tumor stage (tumor size and
degree of spread), aids in determining its potential role in
cancer. It has been reported that TRPV1 expression increased
with increasing tumor grade in prostate cancer biopsies (Czifra
et al., 2009), but it was inversely correlated with tumor stage
in bladder cancer (Lazzeri et al., 2005) suggesting that the
relationship between TRPV1 expression and tumor behavior
may be tumor-type specific. Other studies provide evidence
that TRPV1 activation is necessary for cannabinoid-induced
tumor death. The endocannabinoid, AEA, decreased the viability
of cervical cancer cells that overexpressed TRPV1, CB1, and

CB2. In these cells, the antiproliferative effect of AEA was
counteracted by blockade of TRPV1 but not by antagonism of the
CB1 or CB2 receptors (Contassot et al., 2004a). Similarly, AEA
initiated TRPV1-dependent, CB receptor-independent apoptosis
in human glioma cells (Contassot et al., 2004b). Based upon these
interesting findings, further investigation should uncover roles of
TRPV1 in cancer and identify other cannabinoid agonists that
decrease cancer growth by targeting this pathway.

Vanilloid receptor type 2 (TRPV2) in cancer
The specific role of TRPV2 in carcinogenesis appears to
differ according to tumor type. In urothelial carcinoma,
TRPV2 expression increased with increasing tumor stage and
grade (Caprodossi et al., 2008). However, in hepatocellular
carcinoma, TRPV2 expression was lower in poorly differentiated
(compared to well-differentiated) tumors (Liu et al., 2010).
In glioblastoma multiforme, elevated TRPV2 expression
correlated with increased patient survival (Alptekin et al.,
2015) while increased TRPV2 expression was associated with
poor survival in esophageal squamous cell carcinoma (Zhou
et al., 2014). Although the aforementioned studies demonstrate
that the role of TRPV2 in cancer progression is unclear,
research that examined the impact of cannabinoids on this
cation channel demonstrated that TRPV2 activation decreased
tumor cell survival and sensitized tumor cells to clinically
available chemotherapeutic agents. The phytocannabinoid,
CBD, increases inward movement of Ca++, but it has low
affinity interactions with CB1 and CB2 receptors (De Petrocellis
et al., 2011; McPartland et al., 2015). In glioblastoma, CBD
increased the plasma membrane expression of TRPV2 and
prevented cell resistance to carmustine (BCNU), doxorubicin,
and temozolmide (Nabissi et al., 2013). This sensitization to
cytotoxic chemotherapeutics was prevented by siRNA-mediated
disruption of TRPV2 expression. Consistent with this finding,
the antiproliferative effects of CBD in stem-like glioma cells were
reversed in the presence of the Ca++ channel blocker, ruthenium
red (RR), and the selective TRPV2 blocker, tranilast (Nabissi
et al., 2015). As anticipated, antagonists of CB1 (AM251) and
CB2 (AM630) were not able to rescue cells from cell death
(Nabissi et al., 2015). Moreover, the sensitivity of multiple
myeloma cells to bortezomib was heightened by cell exposure to
CBD in a TRPV2-dependent manner (Hashimoto et al., 1986).
These findings suggest calciummobilization regulated by TRPV2
is essential for CBD-mediated cell death. Further investigation
of the activity of TRPV2 in cancer is needed to determine the
feasibility of utilizing cannabinoids to target this cation channel
as a therapeutic strategy.

Transporters in CNS
Transporters function to actively facilitate movement of
molecules across membranes against concentration and osmotic
gradients. Drugs that target transporters exert effects through
altering distribution of other molecules that, in turn, alter
membrane potential of excitable membranes and/or terminate
action of transmitters that are regulated by uptake. With
respect to cannabinoid signaling, evidence suggests that transport
may contribute to anandamide signal termination, in addition
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to metabolism by FAAH (Nicolussi and Gertsch, 2015). The
anandamide transporter remains a target for development of
selective inhibitors (Nicolussi et al., 2014).

Adding to the promiscuous interaction of anandamide with
non-CB1/CB2 targets is evidence for inhibition of a Na+/Ca++

exchange pump (Kury et al., 2014). This inhibition was of
both influx and efflux, and was not altered by CB1- and
CB2-selective antagonists, pertussis toxin or guanyl nucleotide
analogs, consistent with a direct interaction with the transporter.
Although this transporter is most relevant to cardiac function,
similar transporters are important to CNS activity, and these
results suggest potential anandamide neuronal efficacy related to
ion transport.

Part of the cannabinoid effects on glycinergic signaling
discussed above (section Glycine Receptors in CNS) may in
part be attributable to interaction with glycine transporters.
In the case of glycine transporter GLYT1a, arachidonic acid
and anandamide have interesting opposing modulatory actions
(Pearlman et al., 2003). Interestingly, evidence that upregulation
of GLT-1, the transporter for the excitatory transmitter
glutamate, in preventing cannabinoid dependence, is also
emerging (Gunduz et al., 2011).

As discussed above in the context of adenosine (section
Adenosine Receptors in CNS), evidence demonstrates
that the phytocannabinoid CBD antagonizes an adenosine
transporter, reducing inflammatory responses (Carrier et al.,
2006). This activity was absent in adenosine A2A knockout
mice, and reversed by a selective antagonist, implicating
indirect A2A agonism, via inhibition of transporter-mediated
signal termination, as the mechanism of CBD-mediated
immunosuppression.

While not demonstrating a direct interaction, studies of
effects of the synthetic CB1/CB2 agonist, WIN, have revealed
that dosages effective in reducing locomotor activity (0.1–
1 mg/kg) also decrease expression of dopamine transporters
(Fanarioti et al., 2015). Transporter densities were measured by
in situ [3H]-WIN35428 binding. Decreased levels were observed
in several brain regions relevant to drug abuse including:
nucleus accumbens core and shell; substantia nigra and; ventral
tegmentum.

Enzymes in CNS and Cancer
Endocannabinoid Synthesis and Metabolism in CNS
The elaborate study of phytocannabinoids discussed above
in the context of TRP channels [section Transient Receptor
Potential (TRP) Cation Channels in CNS] in CNS also included
evaluation of the same series of compounds for effects on
activity of enzymes related to endocannabinoid signaling—
including those responsible for endocannabinoid production
(DAGLα), metabolism [monoacylglycerol lipase (MAGL), fatty
acid amide hydrolase (FAAH), and N-acylethanolamine acid
amide hydrolase (NAAA)] and uptake (anandamide cellular
uptake [ACU]). Results demonstrated that a few of the
compounds inhibit DAGLα with a rank order of potency CBDV
= CBDA > CBGA = THCA = CBDVA (EC50s ranged from
17 to 35µM, De Petrocellis et al., 2011). Both CBC and CBG
partially inhibit MAGL activity with efficacies of ∼50% and

IC50s = 50 and 95µM, respectively. THCA is a more fully-
effective MAGL inhibitor with IC50 = 46µM. Only CBD was
found to inhibit FAAH at concentrations under 50µM (IC50 =

15µM). Only CBDA inhibited NAAA, the enzyme responsible
for degradation of the endocannabinoid-like compound N-
palmitoylethanolamine (PEA), doing so with IC50= 23µM.

Fatty Acid Amide Hydrolase (FAAH) in Cancer
FAAH is a membrane-bound serine hydrolase that catabolizes
naturally occurring fatty acid amides including AEA, OEA, and
PEA to fatty acids plus ethanolamine (Cravatt et al., 1996,
2001). FAAH regulates the levels of its main cannabinoid
substrate AEA, and it is overexpressed in different types of
cancer. FAAH expression was elevated in lung adenocarcinoma
compared to non-malignant respiratory epithelial cells (Ravi
et al., 2014). In prostate cancer cells, FAAH was overexpressed,
and the upregulated FAAH levels correlated with poor patient
prognosis (Thors et al., 2010). In addition, AEA levels and
FAAH expression and activity were elevated in human colorectal
cancer tissue compared to non-tumor colon tissue (Chen et al.,
2015). Consistent with findings demonstrating that FAAH is
overexpressed in cancer, in vitro and in vivo studies revealed
that the antitumor activity of endocannabinoids was increased
by inhibiting FAAH activity. AEA-mediated death in HT29
colorectal cancer cells was enhanced by its co-administration
with the FAAH inhibitor, MAFP (Patsos et al., 2005). Similarly,
the apoptotic effect of AEA was increased by co-exposure to
the FAAH inhibitor URB597 in non-melanoma skin cancer cells
(Kuc et al., 2012). In addition, FAAH inhibition with URB597
prevented AEA degradation and increased its cytotoxicity in
neuroblastoma cells (Hamtiaux et al., 2011). The reduction
in cell viability caused by the co-administration of AEA and
URB597 was found to be independent of CB1, TRPV1, PPAR-
α, PPAR-γ, and GPR55 receptor activity (Hamtiaux et al., 2011).
These findings suggest that increasing cellular levels of AEA,
by decreasing FAAH activity, allows greater quantities of this
endocannabinoid to interact with its molecular targets (thereby
enhancing its antitumor activity).

Monoacylglycerol Lipase (MAGL) in Cancer
MAGL is a membrane-associated serine hydrolase that
metabolizes monoacylglycerols (MAG) to free fatty acids
(FFA) plus glycerol. MAGL is a prominent regulator of the
levels of the endocannabinoid, 2-AG. MAGL was found to be
elevated in aggressive cancer cells (compared to non-aggressive
cells) (Nomura et al., 2010). MAGL increased FFA production
to promote tumor growth, tumor cell migration, and tumor
invasion. Inhibiting MAGL expression with shRNAs, or blocking
its activity with JZL184, reduced tumor cell migration in a
manner that was not dependent on the CB1 or CB2 receptors
(Nomura et al., 2010). These data indicate that the tumor
promoting metabolic products of 2-AG increase cancer cell
survival. As such, examining MAGL, 2-AG and FFA levels in
different tumor types, and identifying cellular targets of FFAs,
will be an important step toward understanding whether this
pathway can be exploited for therapeutic benefit.
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Cycloxygenase-2 (COX-2) in Cancer
COX-2 oxygenates arachidonic acid (AA) to prostaglandin H2

(PGH2) that is further metabolized by PG synthase-E, -F2α,
and -D to PGE2, PGF2α, and PGD2, respectively (Rouzer and
Marnett, 2009). PGD2 is then dehydrated to J-series PGs.
Substantial evidence points to a role for COX-2 and its products,
notably PGE2, in the growth of epithelial tumors of the colon,
lung, breast, skin, and other organs (Jiao et al., 2014; Ma
et al., 2015; Majumder et al., 2015; Kiraly et al., 2016). Pro-
inflammatory COX-2 and PGE2 promote cell proliferation,
angiogenesis, and cell migration by activating PGE2 receptors
which increase oncogene and cytokine activity (Rundhaug et al.,
2007, 2011). In contrast, cannabinoids possess anti-inflammatory
activity (Burstein and Zurier, 2009). The mechanism by which
cannabinoids suppress inflammatory cascades is a matter of
debate; although, some studies suggest that cannabinoids block
cyclooxygenase activity. Ruhaak et al. reported that several
cannabinoids isolated from Cannabis sativa inhibited COX-2
activity and reduced prostaglandin generation (Ruhaak et al.,
2011). Tetrahydrocannabinolic acid (THC-A), cannabigerol
(CBG), and cannabigerolic acid (CBGA) inhibited the activity of
COX-2 in a cell-free enzyme assay with IC50 values of 6.3× 10−4,
2.7 × 10−4, and 2.0 × 10−4 M, respectively. However, in TNFα
stimulated cancer cells, a significant reduction in COX-2 activity
was not observed (Ruhaak et al., 2011). In a different study,
CBDA was a potent and selective inhibitor of COX-2 activity
with an IC50 value of 2.2µM and an IC50 value of 20µM for
COX-1 (Takeda et al., 2008). These authors suggested that the
inhibitory effect of cannabinoids on COX-2 activity was due to
the presence of the salicylic acid moiety in the chemical structure
of CBDA. Additional studies are needed to uncover the biological
and clinical relevance of cannabinoid-mediated cyclooxygenase
inhibition.

In contrast to the inhibitory effects of cannabinoids on
COX-2 activity mentioned previously, other reports indicate
that cannabinoids upregulate COX-2 expression. A series of
studies by Hinz et al. demonstrated that cannabinoid-induced
COX-2 expression increased the synthesis of arachidonic acid-
derived prostaglandins that promoted cell death (Hinz et al.,
2004a,b). In lung cancer cells, CBD increased COX-2 expression
and the synthesis of D- and J- series prostaglandins which
initiated tumor cell apoptosis (Ramer et al., 2013). Met-AEA also
increased COX-2 expression in a manner that was dependent
on lipid rafts, ceramide, and the activation of p38 and p42/44
MAPK (Ramer et al., 2003; Hinz et al., 2004a). However, Met-
AEA-induced apoptosis was not reversed by CB1 (AM251),
CB2 (AM630), or TRPV1 (capsazepine) receptor antagonists in
human neuroglioma cells (Hinz et al., 2004b). It was also reported
that Met-AEA increased ceramide synthesis, COX-2 expression
and the production of proapoptotic PGD2 in human cervical
carcinoma cells (Eichele et al., 2009). In this study, inhibiting
the production of D-series PGs using siRNA directed against
lipocalin-PGDS or siRNA against PPARγ prevented Met-AEA-
induced apoptosis. A reversal in Met-AEA-induced apoptosis,
however, was not observed in the presence of the receptor
antagonists, AM251, AM630 or capsazepine (Eichele et al., 2009).
In contrast, Garder et al. determined that Met-AEA increased

lung tumor growth in vitro and in vivo (Gardner et al., 2003).
This pro-tumorigenic effect was blocked by pharmacological
inhibitors of COX-2, p38, and p42/44, but it was not affected by
the CB1 (SR141716) and CB2 (SR144528) receptor antagonists
(Gardner et al., 2003).

AEA is also a substrate of COX-2, and, as a result, is
cytotoxic in tumor cells that overexpress COX-2. AEA has
an unmodified arachidonate backbone, and it is therefore
susceptible to oxidative metabolism by COX-2 to form
prostaglandin-ethanolamines, also known as prostamides (PM)
(Yu et al., 1997; Kozak et al., 2002; Soliman et al., 2016). The
metabolic products of AEA, prostamides-E2, F2α, and -D2, do not
bind to prostaglandin receptors, and they are metabolically stable
relative to prostaglandins derived from arachidonic acid (Kozak
et al., 2001; Matias et al., 2004). Recently, we demonstrated
that AEA was also metabolized by COX-2 to novel J series
prostamides that initiated tumor cell apoptosis (Kuc et al.,
2012; Ladin et al., 2017). Because epithelial cancer cells typically
overexpress COX-2, AEA was metabolized to pro-apoptotic J-
series prostamides in tumor cells, but J-series prostamides were
not detected in non-tumor cells which had low endogenous
levels of COX-2 (Soliman et al., 2016). Blockade of AEA
degradation with the FAAH inhibitor, URB597, increased J-series
prostaglandin synthesis and apoptosis; however, inhibition of
CB1, CB2, and TRPV-1 receptors using selective antagonists
did not reverse this effect (Soliman and Van Dross, 2016).
Furthermore, cell treatment with exogenous 15-deoxy, 112,14

prostamide J2 (15d-PMJ2), the most abundant J-series product
of AEA metabolism by COX-2, also caused cell death in vitro
and in vivo (Ladin et al., 2017). Reports by Pastos et al.
also demonstrated that COX-2 was required to induce death
in cancer cells treated with AEA (Patsos et al., 2005, 2010).
Prostamides E2 and D2 were noted to cause tumor cell death
while blockade of COX-2 activity or expression partially reversed
this antiproliferative effect. However, AEA-mediated cell death
was not blocked by CB1, CB2, or TRPV1 receptor antagonists
(Patsos et al., 2010). Thus, COX-2 is a critical regulator of
CB receptor-independent cannabinoid activity in cancer cells.
These studies demonstrate that cannabinoid metabolism and
signal transduction is modulated by COX-2 and that COX-2 is
also inhibited by molecules within the cannabinoid family. This
implies that a complex relationship exists between cannabinoids,
the endocannabinoid system, and cyclooxygenases in cancer and
potentially in other organ systems.

Phosphatases in Cancer
The restoration of phosphatase expression and activity is a
desirable effect of chemotherapeutic agents, as these enzymes
dephosphorylate kinases, and other pro-tumorigenic proteins,
that are often constitutively active in cancer (Perrotti and
Neviani, 2013). The anticancer activity of WIN55212-2 was
reported to be mediated by phosphatases in a cannabinoid
receptor-independent manner (Sreevalsan et al., 2011; Sreevalsan
and Safe, 2013). WIN55212-2 increased the expression of
several phosphatases including dual specificity phosphatases 1
and 10 (DUSP1, DUSP10) and protein tyrosine phosphatase,
non-receptor type 6 (PTPN6) in LNCaP prostate cancer cells
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(Sreevalsan et al., 2011). WIN55212-2 also increased PTPN6
expression and protein phosphatase A2 (PPA2) activity in SW480
colon cancer cells (Sreevalsan et al., 2011; Sreevalsan and
Safe, 2013) and reduced the expression of the pro-tumorigenic
transcription factors, specificity protein 1, 3, and 4 (SP1, SP3,
and SP4). The effect of WIN55212-2 on SP expression and
apoptosis was dependent on phosphatase PPA2, a prominent
serine-threonine phosphatase in eukaryotic cells that regulates
the cell cycle and apoptosis. Specifically, it was determined that
WIN55212-2 increased the activity of PPA2 and activation of the
Sp repressor, ZBTB10, thereby inhibiting Sp expression through
a pathway that was regulated by micro RNA-27a (miR-27a).
However, this cytotoxic activity was not prevented by blockade
of CB1 or CB2 receptor activity (Sreevalsan and Safe, 2013).
These reports suggest that cannabinoid activity is modulated
by phosphatases independent of the cannabinoid receptors.
Phosphatases have significant impacts on cellular behavior,
because these enzymes control kinase activity. Therefore,
examination of the role of phosphatases in cannabinoid activity
may allow these proteins to be targeted to improve the action of
cannabinoids.

Other Non-receptor Targets in Cancer
Lipid Rafts and Ceramide
Lipid rafts are glycoprotein microdomains enriched in
cholesterol and sphingolipids. Lipid rafts serve as organization
centers that promote interactions between proteins to aid in
intracellular signal transduction (Simons and Ikonen, 1997).
Ceramide is a membrane lipid that displaces cholesterol from
lipid rafts, enhances membrane rigidity, stabilizes rafts and
induces formation of large raft domains (“platforms”) in plasma
membranes (Simons and Ikonen, 1997; Megha and London,
2004). It has been reported that the antitumor activity of
cannabinoids is regulated by ceramide and lipid rafts which
control CB1 and/or CB2-mediated signal transduction (Bari
et al., 2005; Sarnataro et al., 2006). However, other studies
demonstrate that ceramide and lipid rafts transmit lethal
cannabinoid signals independent of CB1 and CB2. DeMorrow
et al., found that AEA increased ceramide synthesis and
localization of the death receptor/ligand, Fas/FasL, to lipid rafts
leading to cholangiocarcinoma cell death (DeMorrow et al.,
2007; Huang et al., 2011). In these studies, selective antagonists
of CB1 and CB2 did not inhibit the cytotoxicity of AEA. In
a different report, lipid raft disruptors completely attenuated
AEA-mediated cell death in neuroblastoma cells (Hamtiaux et al.,
2011). This cytotoxicity was not blocked by pharmacological
antagonism of CB1, CB2, GPR55, TRPV1, or PPARg. Similarly,
the disruption of lipid rafts, but not the antagonism of CB1, CB2,
or TRPV1 receptors, prevented AEA cytotoxicity in cutaneous
melanoma cells (Adinolfi et al., 2013). In addition, Sarker
and Maruyama found that disruption of lipid rafts blocked
AEA-induced oxidative stress and apoptosis independent of the
CB1, CB2, or TRPV1 receptors in different cell lines (Sarker
and Maruyama, 2003). Consistent with these findings, Met-
AEA-induced apoptosis was inhibited by the use of ceramide
synthase inhibitors and lipid raft disruptors but not by CB1,
CB2, or TRPV1 receptor antagonists in human neuroglioma and

cervical carcinoma cells (Hinz et al., 2004b; Eichele et al., 2009).
Moreover, WIN55212-2, caused lipid raft-mediated cell death
in cultured melanoma cells in a CB1/CB2 receptor-independent
manner (Scuderi et al., 2011). Collectively, these findings suggest
that cannabinoids reduce tumor cell viability by modulating lipid
rafts through cannabinoid receptor-dependent and -independent
pathways.

Oxidative Stress in Cancer
Reactive oxygen species (ROS) are second messenger signal
transduction molecules in eukaryotic cells. Low levels of ROS
are needed for physiological processes such as immune defense
against pathogens, mitogenic responses, and maintenance of
cellular homeostasis (Finkel, 1998; Kim et al., 1998; Dröge, 2002).
Physiologic levels of ROS are maintained by a balance between
antioxidant and pro-oxidant systems in the cell. However,
when antioxidant systems become overwhelmed, oxidative stress
occurs. Cancer cells contain supraphysiological levels of ROS
that activate signaling pathways which promote cell proliferation,
survival, angiogenesis, and metastasis (Nourazarian et al., 2014).
However, excessively high ROS levels causes oxidative damage
to cellular proteins, lipids, and DNA that triggers cell cycle
arrest and cell death (Kaur et al., 2014). Structurally distinct
cannabinoids can inhibit tumor cell survival by generating high
levels of ROS. CBD decreased glutathione (GSH) levels and
increased GSH reductase and GSH peroxidase content thereby
causing cytotoxic oxidative stress in glioma cells (Massi et al.,
2006). The cytotoxicity of CBDwas abrogated by the antioxidant,
α-tocopherol; however, blockade of CB receptor activity or
ceramide synthesis did not significantly alter CBD cytotoxicity
(Massi et al., 2004). Moreover, CBD-induced oxidative stress
and cell death occurred in tumorigenic U87 glioma cells but
not in non-tumorigenic primary glial cells (Massi et al., 2004),
suggesting ROS elicits tumor-selective cytotoxicity. Ligresti et al.
also found that antioxidants (α-tocopherol and vitamin C), but
not CB receptor antagonists, blocked the antiproliferative activity
of CBD in breast adenocarcinoma cells (Ligresti et al., 2006).
Similarly, Shrivastava et al. determined that CBD increased ROS
production that initiated autophagy and apoptosis independent
of CB1, CB2, or TRPV1 in breast cancer cells (Shrivastava et al.,
2011).

In several reports, the endocannabinoid, AEA, induced ROS-
dependent, CB receptor-independent cell death. Oxidative stress
and apoptosis in AEA treated non-melanoma skin cancer cells
were prevented by the antioxidant, N-acetyl cysteine (NAC) (Van
Dross, 2009). Blockade of CB1 and CB2 receptor activity did
not rescue cells from AEA-mediated oxidative stress or apoptosis
(Soliman and Van Dross, 2016). Similarly, in colon cancer cells,
AEA-induced cell death and apoptosis was reversed by the use
of antioxidants but not by CB1 or CB2 receptor antagonists
(Gustafsson et al., 2009; Soliman, 2015). These findings suggests
that oxidative stress regulates cannabinoid activity through
pathways that circumvent the cannabinoid receptors.

Endoplasmic Reticulum (ER) Stress in Cancer
ER stress occurs when the capacity of the cell to fold proteins
is exceeded by the protein folding load resulting in the
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accumulation of unfolded proteins in ER (the unfolded protein
response, UPR) (Holcik and Sonenberg, 2005). The UPR is
an integrated intracellular signal transduction pathway that is
regulated by three ER-resident stress sensors: double-stranded
RNA-activated protein kinase (PKR)-like endoplasmic reticulum
kinase (PERK), activating transcription factor-6 (ATF6), and
inositol requiring kinase-1 (IRE1) (Lin et al., 2008; Chakrabarti
et al., 2011). Activated PERK phosphorylates the α subunit of
eukaryotic initiation factor 2α (eIF2α), resulting in a reduction in
global translation with a preferential increase in the expression
of activated transcription factor 4 (ATF4)-regulated genes
(reviewed in Marciniak et al., 2006). Activation of PERK, ATF6,
and IRE1 promotes cell survival by decreasing protein synthesis
and by increasing protein folding and degradation to reestablish
ER homeostasis. However, excessive or prolonged ER stress
activates cell death pathways primarily by increasing expression
of the transcription factor, C/EBP homologous protein 10
(CHOP10, also known as the growth arrest and DNA damage-
inducible gene 153 [GADD153]) which transcribes pro-apoptotic
genes (reviewed in Marciniak and Ron, 2006). Several studies
have shown that the ER stress pathway mediates the anticancer
activity of cannabinoids. The phytocannabinoid, THC, increased
phosphorylation of eIF2α and the expression of the CHOP10
transcriptional product, TRB3, in hepatocellular carcinoma cells
(HEPG2), human glioma cells, and RasV12/E1A-transformed
mouse embryonic fibroblasts (MEF, Salazar et al., 2009, 2013;
Vara et al., 2013). TRB3 is known to inhibit cancer cell
proliferation by inactivating AKT/ mammalian target of the
rapamycin complex 1 (mTORC) signal transduction (Ohoka
et al., 2005). In human glioma cells treated with THC, it
was determined that TRB3 was required for inhibition of
Akt/mTORC1 signaling and the induction of autophagy and
apoptosis (Salazar et al., 2009). Furthermore, unlike Trib3+/+

(also known as TRB3) MEF cells, Trib3−/− MEFs were resistant
to cell death caused by THC (Salazar et al., 2013). Similar
results were observed when the two cell types were injected
subcutaneously in nude mice that were subsequently treated
with THC. THC reduced the growth of Trib3+/+ xenograft
tumors; however, this effect was not seen in mice engrafted
with Trib3−/− cells (Salazar et al., 2013). WIN55212-2 also
induced ER stress and increased the expression of CHOP10
and TRB3 in cancer cells (Wasik et al., 2011; Notaro et al.,
2014; Pellerito et al., 2014). In addition, WIN55212-2 reduced
the viability of osteosarcoma cells by initiating cytotoxic
autophagy (Notaro et al., 2014). Genetic ablation of CHOP10
using siRNA prevented WIN-induced autophagic cell death.
WIN55212-2 also caused autophagy and apoptosis in human
colorectal cancer cells that was prevented by reducing the
expression of CHOP10 with siRNA (Pellerito et al., 2014).
Interestingly, Wasik et al. reported that WIN55212-2-induced
autophagic cell death in Mantle cell lymphoma (MCL) cells
occurred independent of the CB1 and CB2 receptors (Wasik
et al., 2011). Consistent with these observations, the ER stress
inhibitors, phenylbutyric acid (PBA) and salubrinal, prevented
apoptosis in non-melanoma skin cancer cells treated with
AEA. However, selective antagonism of the CB1 and CB2
receptor failed to inhibit AEA-induced ER stress or apoptosis

(Soliman and Van Dross, 2016; Soliman et al., 2016). Structurally
diverse cannabinoids initiate cytotoxic ER stress in cancer cells
independent of the cannabinoid receptors. Because the ER stress
pathway is a primary regulator of protein folding and synthesis
in cells, understanding the impact of cannabinoids on the ER
stress pathway is of vital importance for development of effective
therapeutic agents.

CONCLUSIONS

Cannabinoids have emerged as prominent modulators of diverse
physiological and pathological processes. As such, efforts are
underway to examine the efficacy of cannabinoid agonist and
antagonists as therapeutic agents (McPartland et al., 2014; Russo,
2016; Toguri et al., 2016; Zhou et al., 2016). Cannabinoids
primarily exert their effects through the cannabinoid receptors
(CB1 and CB2); however, other receptors and molecular
targets are now known to be important for their activity.
The endocannabinoid system (ECS), which is composed of
cannabinoids, cannabinoid receptors, and molecules involved
in cannabinoid synthesis, uptake, and degradation, was initially
described in the CNS. As a consequence, mechanisms of
cannabinoid activity in the CNS are well-characterized compared
to what is known about cannabinoid activity in cancer. This
review sought to describe the cannabinoid receptor-independent
actions of cannabinoids in systems where cannabinoid activity
was both well- and poorly-defined. The studies examined
herein indicate that, in the CNS, the activity of cannabinoids
could be regulated by ion channels, enzymes, transporters, and
receptors other than CB1 and CB2. In cancer cells, the CB
receptor-independent activity of cannabinoids was found to
be mediated by receptors, ion channels, lipid rafts, enzymes,
and cellular stressors. Interestingly, in both the CNS and in
cancer, several components of the ECS were important for
CB1/CB2 receptor-independent activity including GRP55, TRP
channels, FAAH, and MAGL. The dependence of cannabinoid
activity on these common targets in dissimilar systems reinforces
the importance of the ECS in cannabinoid signaling and
activity.

Studies described in this review also reveal cannabinoid
targets that are unique to the CNS and cancer. In the
CNS, cannabinoids generated different biological responses
through modulation of opioid, serotonin, adenosine, amino
acid, and cholinergic receptors. Opioid, serotonin, NMDA, and
GABA receptors have been implicated in cannabinoid-mediated
modulation of cancer pain and chemotherapy-induced emesis
(Maccarrone et al., 2009; Gu et al., 2011; Khasabova et al., 2011;
Bolognini et al., 2013; Higgins et al., 2013; Ward et al., 2014).
Future investigations should determine the role of these receptors
in cannabinoid-induced tumor cell death—particularly in CNS
malignancies. Research in cancer cells also demonstrated that
the activity of cannabinoids could be mediated by lipid rafts,
ER stress, oxidative stress, and enzymes. The involvement of
lipid rafts, ROS and enzymes (COX-2 and phosphatases) in
CNS cannabinoid signaling have been described in a few studies
(Cannich et al., 2004; Maccarrone et al., 2009; Oddi et al.,
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2012; Penumarti and Abdel-Rahman, 2014b; Colín-González
et al., 2015); however, the impact of the ER stress pathway on
cannabinoid activity in the CNS remains an open question.

The diversity of cellular targets for cannabinoid ligands
helps to explain the wide range of physiological responses to
cannabinoid drugs. This range of efficacies also suggests that
opportunities for employing cannabinoid-based therapies have
only just begun to be explored. More needs to be learned
about CB1/CB2-independent targets of cannabinoids to identify
off-receptor effects, mechanisms of tolerance/ resistance and
to explain unanticipated outcomes. In addition, by examining
common and distinct cannabinoid targets in different biological
systems, unique mechanisms of drug action can be uncovered.
Among these biological systems are, notably, animals more
primitive than chordates that lack the classical cannabinoid
receptors (Elphick, 2012). Despite absence of these receptors,
there is significant literature documenting behavioral effects
in these organisms (reviewed by Soderstrom, 2009). To the
extent that some signaling systems are conserved across
vertebrate and invertebrate species (e.g., serotonergic signaling,

Tierney, 2001) these behavioral effects may involve subsets
of the array of non-CB1/CB2 targets reviewed here. Thus,
invertebrate species, without interfering classical cannabinoid
receptors (and therefore representing “clean” systems), hold
promise for studying mechanisms of off-receptor cannabinoid
effects.
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